News

Structures of two dimensional ice predicted by computer simulations

Scientists at UCL, including the LCN, and Cambridge have predicted new two-dimensional ice structures on the basis of state-of-the-art computer simulations.

A systematic computer simulation study has led to predictions about how water molecules freeze into a single layer of ice. These simulations, published in Physical Review Letters, reveal several models for 2D ice, including a hexagonal, a Cairo tiling pentagonal, a square and a rhombic structure. The new 2D ice structures, obtained on the basis of first principles simulations and unbiased structure search methods, extend the knowledge of ice in nature and are potentially important in understanding phenomena such as cloud microphysics and tribology.

The authors also predict a sequence of phase transitions that happens as a function of pressure and confinement, leading to the determination of a phase diagram of 2D ice.

Overall this work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures formed to the confining pressure and confinement width. The observation of the flat square structure supports recent experimental observations of square ice confined within graphene sheets. The authors also discuss how other structures suchas the Cairo tiling pentagonal structure may be observed by slightly altering the conditions used so far in experiments.

The publication in Phyical Review Letters can be downloaded.

More news

Q-BIOMED at the UK National Quantum Technologies Showcase

Q-BIOMED at the UK National Quantum Technologies Showcase

The annual UK National Quantum Technologies Showcase took place on Friday 7 November welcoming over 2,500 in-person delegates to the ... Find out more

Photon Beats light up Imperial Lates

Photon Beats light up Imperial Lates

A team from the London Centre for Nanotechnology (LCN) at King’s brought physics to life at Light’s Colour Action, an Imperial Lates ... Find out more

Quantum-powered rapid tests using nanodiamonds could detect covid much earlier

Quantum-powered rapid tests using nanodiamonds could detect covid much earlier

In research published in Nature Communications earlier this month, some of our scientists have demonstrated that their spin-enhanced ... Find out more

Equipment & Facilities

EDUCATION

Training

Loading...
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.