News

Controlling optical response with designed electron temperature distributions in plasmonic nanostructures.

LCN researchers at King’s College London have discovered how to control light at ultrafast timescales by designing the distribution of energy of electrons in nanostructures. These metallic nanostructures are manmade materials that can have interesting optical properties, not found in naturally occurring materials. It has been found that these nanostructures can have regions of very high light-matter interaction, with the study of this interaction known as the field of plasmonics. By using intense pulses of laser light, electrons in these regions absorb larger amounts of energy, changing the electrons’ characteristic temperature. When the electron temperature increases, the optical properties of the material change. They can become more opaque or transparent at certain wavelengths in the spectrum of light. By altering the distribution of this electron temperature within the nanostructure, the researchers found a way to control the speed at which the optical properties of the nanostructure change. Using this they demonstrated control over the intensity of light passing through the nanostructure on a sub-300 fs time scale.

One of the researchers Luke Nicholls said, “The ability to change the dynamic optical response of nanostructures by proper design of electron temperature distributions could have wide ranging applications for technology in telecommunications and chemistry.” The switching of optical properties at faster speeds in data processing and communication, would help with the ever-growing demand on access to data, which is straining current infrastructure. Furthermore, the ability to generate hot electrons in specific locations within a nanostructure could provide added functionality in photo-assisted catalysis and nonlinear optics.

Link to research paper: Designer photonic dynamics by using non-uniform electron temperature distribution for on-demand all-optical switching times

Other contributors
Luke H. Nicholls, Tomasz Stefaniuk, Mazhar E. Nasir, Francisco J. Rodríguez-Fortuño, Gregory A. Wurtz
LCN Authors
Anatoly Zayats

More news

Photon Beats light up Imperial Lates

Photon Beats light up Imperial Lates

A team from the London Centre for Nanotechnology (LCN) at King’s brought physics to life at Light’s Colour Action, an Imperial Lates ... Find out more

Quantum-powered rapid tests using nanodiamonds could detect covid much earlier

Quantum-powered rapid tests using nanodiamonds could detect covid much earlier

In research published in Nature Communications earlier this month, some of our scientists have demonstrated that their spin-enhanced ... Find out more

London Centre for Nanotechnology AFM user meeting

London Centre for Nanotechnology AFM user meeting

Join us for a day filled with exciting discussions, presentations, and networking opportunities for Atomic Force Microscopy ... Find out more

Equipment & Facilities

EDUCATION

Training

Loading...
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.