News

Mass of human chromosomes measured for the first time

For the study, published in Chromosome Research, researchers including the LCN Professor Ian Robinson and Archana Bhartiya used a powerful X-ray beam at the UK’s national synchrotron facility, Diamond Light Source, to determine the number of electrons in a spread of 46 chromosomes which they used to calculate mass.

They found that the chromosomes were about 20 times heavier than the DNA they contained – a much larger mass than previously expected, suggesting there might be missing components yet to be discovered.

As well as DNA, chromosomes consist of proteins that serve a variety of functions, from reading the DNA to regulating processes of cell division to tightly packaging two-metre strands of DNA into our cells.

Senior author Professor Ian Robinson said: “Chromosomes have been investigated by scientists for 130 years but there are still parts of these complex structures that are poorly understood.

“The mass of DNA we know from the Human Genome Project, but this is the first time we have been able to precisely measure the masses of chromosomes that include this DNA.

“Our measurement suggests the 46 chromosomes in each of our cells weigh 242 picograms (trillionths of a gram). This is heavier than we would expect, and, if replicated, points to unexplained excess mass in chromosomes.”

In the study, researchers used a method called X-ray ptychography, which involves stitching together the diffraction patterns that occur as the X-ray beam passes through the chromosomes, to create a highly sensitive 3D reconstruction. The fine resolution was possible as the beam deployed at Diamond Light Source was billions of times brighter than the Sun (ie, there was a very large number of photons passing through at a given time).

The chromosomes were imaged in metaphase, just before they were about to divide into two daughter cells. This is when packaging proteins wind up the DNA into very compact, precise structures.

Archana Bhartiya, a PhD student at the LCN and lead author of the paper, said: “A better understanding of chromosomes may have important implications for human health.

“A vast amount of study of chromosomes is undertaken in medical labs to diagnose cancer from patient samples. Any improvements in our abilities to image chromosomes would therefore be highly valuable.”

Each human cell, at metaphase, normally contains 23 pairs of chromosomes, or 46 in total. Within these are four copies of 3.5 billion base pairs of DNA.

The research was supported by Diamond Light Source, UKRI, the Biotechnology and Biological Sciences Research Council (BBSRC), the Engineering and Physical Sciences Research Council (EPSRC), the European Research Council, and the US Department of Energy.

Image: The spread of 46 chromosomes, with artificial colour added. Credit: Archana Bhatiya et al

Image-of-chromosomes

More news

The LCN captivates crowds at The Great Exhibition Road Festival!

The LCN captivates crowds at The Great Exhibition Road Festival!

The LCN featured at the Great Exhibition Road Festival over the weekend of Saturday 6 and Sunday 7 June. Thousands of visitors came to ... Find out more

Professor Neil Alford elected as a Fellow of Royal Society

Professor Neil Alford elected as a Fellow of Royal Society

Professor Neil Alford has been elected a Fellow of the Royal Society! This is a huge honour and a well-deserved recognition of ... Find out more

Nanoneedle Technology Corrects Genetic Mutation in Rare Skin Disease

Nanoneedle Technology Corrects Genetic Mutation in Rare Skin Disease

LCN Researchers from the Faculty of Dentistry, Oral & Craniofacial Sciences at King’s College London have developed a novel ... Find out more

Equipment & Facilities

EDUCATION

Training

Loading...
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.